
219800-12-T AD-A227 619

STAGECODE GENERATION
WITH C4PL PROCEDURES
A User's Guide to Cyto-HSS Stage Programming
in the C4PL Language Environment

Paul A. Kortesoja
JULY 1990

DTIC
FLECTE

Prepared for: Z
Sandia National Laboratories B
P.0. Box 5800.....Albuquerque, NM 87185-5800

Contract No. 42-3638 I A

Ar-Od tot plbaw "14M
9 .) !0

M;~~% ;M 48041



TECHNICAL REPORT STANDARD TITLE PAGE

. Report No. .Government Accession No. 3. Recipient's Catalog No.
219800-12-T 7I

4. Title andSubtitle 5. Report Date
Stagecode Generation with C4PL Procedures: A July 1990
User's Guide to Cyto-HSS Stage Programming in 6. Performing OrvanizationCode

the C4PL Language Environment ERIM
7. Autnor's) 8. Performing Organizaton Pk port No.

Paul A. Kortesoja 219800-12-T
9. Performing Organization Name and Address 10. Work Unit No.

Environmental Research Institute of Michigan PTD-90-063
P.O. Box 8618 11. Contract or Grant No.

Ann Arbor, MI 48107-8618 42-3638
13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Programming Manual
Sept. 1989 - Oct. 1990

Sandia National Laboratories
P.O. Box 5800 14 ponsoring Agency Code

Albuquerque, NM 87185-5800
15. Supplementary Notes

16. Abstract

This document describes facilities within ERIM's C4PL image processing programming language that
allow direct manipulation and generation of progran~ining code for the Cyto-HSS Neighborhood Processing
Stage. The Cyto-HSS Stage performs complex cellular (neighborhood) and point transformations on eight-bit
images.

- Since all feasible operations that can be performed by the stage cannot be produced with single commands
within C4PL, methods have been provided to access the lowest level of programming of the stage.
Algorithmists who need to transform images, in ways not directly supported by commands in C4PL, have the
ability to set up their own low-level stage program data blocks. This provides the knowledgeable C4PL
programmer with access to all the flexibility inherent in the stage hardware. "5

Stage code generation is an art that deserves to be hidden from the user--this is one of the reasons for the
existence of C4PL. The Cyto-HSS Stage, like any other piece of specialized programmable digital hardware, is
a relatively complicated unit Detailed knowledge of its internal structure and operational characteristics is
necessary in order to program effectively. However, the complicated nature of the beast is the source of its
power, in the hands of knowledgeable and creative programmers, it can be made to perform wonderful deeds on
digital data. This document is intended to help provide that necessary knowledge.

17. Kry Words 18. Distribution Statement

Cellular Automata Approved for public release;
Computer Languages distribution is unlimited.

* Image Processing
Programming Languages

19. Security Classif. (of this report) 20. Security Classif. (of this pace) 21. No. of Paces 22. Price

Unclassified Unclassified 57



* ~ R1M

CONTENTS

FIGURES ....... .. ........................... .

1.0 INTRODUCTION ....... ...................... . .

1.1 REFERENCES ....... ................... 2

2.0 CYTO-HSS CONCEPTS ....... ................... 3

3.0 C4PL IMAGE PROCESSING COMMANDS THAT PRODUCE STAGECODE . 5
3.1 LOCAL TRANSFORMATIONS OVERVIEW .... ......... 5

3.1.1 Cellular Transformations Overview . . . 6
3.1.2 Edge Detection/Gradient Extraction

Overview ..... ............... 7
3.1.3 Filters .................. 8
3.1.4 Maxima And Minima Transformations

Overview ................... 9
3.1.5 Morphological Transformations Overview 10
3.1.6 Shading Overview ... ........... ... 16

3.2 POINT TRANSFORMATIONS OVERVIEW ... ...... . 16

4.0 WHAT IS "STAGECODE"? ......................... 19
4.1 POINT TRANSFORMATIONS ...... ............ 21

4.1.1 OpType ....... ................ 21
4.1.2 RAMtype ..... ............... ... 21
4.1.3 PRAM Data ..... .............. .. 22

4.2 NEIGHBORHOOD OPERATIONS ..... ........... 22
4.2.1 OpType ....... ................ 23
4.2.2 RAMtype ..... .............. ... 23
4.2.3 Control Registers ... .......... .. 23
4.2.4 NRAM Data ..... .............. .. 24

5.0 WHY MESS WITH STAGECODE DIRECTLY? ... .......... .. 25
5.1 MODIFICATION OF STAGECODE ... ........... ... 25
5.2 GENERATION OF STAGECODE ..... ............ 26

6.0 C4PL FEATURES USEFUL FOR STAGECODE OPcRATIONS . ... 29
6.1 C4PL STAGECODE GENERATING COMMANDS ....... . 29
6.2 ARRAYTOCODE COMMAND .... .............. .. 29
6.3 CODETOARRAY COMMAND .... .............. .. 30
6.4 APPLY COMMAND ..... ................. ... 30
6.5 ARRAY OPERATIONS ..... ............... ... 30
6.6 STAGECODE ARRAY INDEXING ... ........... ... 31
6.7 BIT-WISE LOGICAL OPERATORS ... .......... .. 31
6.8 ROTATECODE COMMAND ..... .............. .. 32
6.9 ROTATEARRAY COMMAND .... .............. .. 33
6.10 ASCENDINGPRAM ..... ................ ... 33
6.11 STAGEDEFS.. ..... .................. ... 33
6.12 PRAMSET COMMAND ....... ................ 33
6.13 PRAMSWAP COMMAND ..... ............... ... 34

iii



~RIMI

CONTENTS (concluded)

6.14 STAGEANALYZE COMMAND .... ............. ... 35

6.15 OTHER USEFUL COMMANDS .... ............ . 35

7.0 ARRAYS VERSUS DIRECT STAGECODE REFERENCES ... ...... 37

8.0 SOME EXAMPLES .... ... .................... ... 398.1 MARKTEES . . . . . . . . . . . . . . . . . . . J 9
8.2 FiNOTEES8. ~~QLS........................... 43
8.3 SKEL4 . . . . . . . . . . . . . . . . . . . . . 58. KE4..............................51

REPcRENCES
. ....................... 57

BIBLIOGRAPHY

iv



FIGURES

Figure 1. Hierarchy of Stage Program Organization . . .. 20

Figure 2. A PRAM Operation ....... ................ 21

Figure 3. Organization of PRAM Stageop Data ... ....... 21

Figure 4. An NRAM Operation ..... ............... ... 22

Figure 5. Organization of NRAM Stageop Data ... ....... 23

Aceession Tor

NTIS GRA&I
DTIC TAB El

UUivirnlced 0]
JU. ir i catIon

By_~ -

Distribution/

Availability Codes

'Avail and/or

DIat specialvI



1.0 INTRODUCTION

This document describes facilities within ERIM's C4PL image
processing programming language that allow direct manipulation and
generation of programming code for the Cyto-HSS Neighborhood
Processing Stage. The Cyto-HSS Stage performs complex cellular
(neighborhood) and point transformations on eight-bit images.

C4PL is a powerful, general purpose language for constructing
image processing algorithms to enhance digital images, and to extract
useful data from digital images. Its library of commands that provi;E
complex image transform operations with single-line commands covers a
wide range of useful transforms. But it is nearly impossible, and not
even desirable, to make all possible operations available within the
Cyto-HSS stage accessible to the programmer as single-line commands.

Since all feasible operations that can be performed by the stage
cannot be produced with single commands within C4PL, methods have been
provided to access the lowest level of programming of the stage.
Algorithmists who need to transform images in ways not directly
supported by commands in C4PL have the ability to set up their own
low-level stage program data blocks. This provides the knowledgeable
C4PL programmer with access to all the flexibility inherent in the
stage hardware.

Early versions of the C4PL language, and its predecessor C3PL,
did not have the commands and capabilities necessary to directly
program the stage from the language itself. External tasks were
devised to provide this access to the lowest levels of the software
system to allow generation of user-defined stage code blocks. This
method of programming the stage is still available, but everything
that in the past had to be done in external tasks can now be done at
the C4PL command language level.

Stage code generation is an art that deserves to be hidden from
the user--this is one of the reasons for the existance of C4PL. The
Cyto-HSS Stage, like any other piece of specializtd p, grammable
digital hardware, is a relatively complicated unit that requires
detailed knowledge of its interal structure and operational
characteristics to program effectively. However, the complicated
nature of the beast is the source of its power; in the hands of
knowledgeable and creative programmers it can be made to perform
wonderful deeds on digital data. This document is intended to provide
the necessary knowledge.



1.1 REFERENCES

Several related documents and textbooks should be available for
the stage programmer's reference.

The S Programmer's Manual provides a hardware-level
description of the stage's internal operation. It also defines the
organization and contents of the stage code program data block. (This
is essential for C4PL programmers setting up their own stage code
blocks.)

The C4PL Advanced Programming Manual provides much detailed
information on writing external tasks in C4PL. External tasks (among
other things) were provided in C4PL to create user-defined stage code
blocks. As C4PL has evolved, however, the capabilities needed to
create user-defined stage code have been developed within C4PL to the
point where external tasks are no longer needed for this purpose.
Useful information is contained in Chapters 3 (External Tasks in C), 4
(Operation and Programming the Cyto-HSS Stage), and 6 (Writing
External Tasks in Pascal).

An introduction to C4PL and descriptions of basic capabilities
and functions are contained in the C4PL User's Manual. From a
stage code block development viewpo-- the interesting portions of
the User's Manual are sections 4.2 through 4.4 (variables, constants,
and expressions and operators). Understanding and knowledge of
Chapter 5 material on C4PL procedures is essential for development of
procedures to generate stage code blocks. Also, Chapter 11 is useful,
as it describes saving stagecode and executing stagecode.

A number of textbooks exist that provide background information
on relevant image processing and computer architecture concepts. For
background information and examples of the concepts of cellular
transformations see Cellular Automata by E.F. Codd. Further
illustrations of cellular automata concepts may be found in Modern
Cellular Automata by K. Preston and M.J.B. Duff. The theoreti-cal
foundations of mathematical morphology and its applications to image
analysis are described in Image Analysis and Mathematical Morphology
by J. Serra.

2



* IEJM
2.0 CYTO-HSS CONCEPTS

The Cyto-HSS Stage transforms pixels of an image in a
programmably-defined way. An image is presented pixel-by-pixel to
each stage in raster scan order from the first line through the last
line. The stage transforms each pixel by evaluating the programmed
transform of the 3 by 3 neighborhood of pixels around and including
the input pixel. The stage retains the original pixel values for the
two most recent lines of an image as it passes through, in order to
have the data available for the 3 by 3 neighborhoods.

The "pipeline" in the Cyto-HSS is a serially-linked set of
Cyto-HSS stages. Images passed through the pipeline will be
transformed in a programmably-defined way in each stage. The
resultant image output of each stage is passed to the input of the
subsequent stage. In this way, multiple operations on an image can be
performed in one "circulation" of an input image through the pipeline.
The Cyto-HSS's power results from each stage's ability to produce a
neighborhood transformed image pixel in one "clock tick" of the
machine, and the ability to cascade stages together to multiply the
number of neighborhood transforms that occur with each clock tick.
The Cyto-HSS has as its primary purpose the support of high-speed
circulation of data through this pipeline of stages (and other
processing modules).

3



-RIM
3.0 C4PL IMAGE PROCESSING COMMANDS THAT PRODUCE STAGECODE

C4PL provides dozens of commands to create image transformation
operations. All of these commands are parameterized to the fullest
extent possible to provide the maximum flexibility to the user for
specifying the desired transformation.

Before proceeding with reading the detailed explanations of the
"inner workings" of C4PL stagecode that constitute the rest of this
document, an overview of the broad range of predefined image
transformation commands available in C4PL that utilize the Cyto-HSS
Stage will be given. This material is a large subset of the
introductory material in the EPICAL Reference Manual.

Image transformations are operations which perform image
processing transformation for image analysis and other purposes.
These programs make up the EPICAL Library of C4PL. The types of
transformations available in EPICAL include:

Combining Images
Geometric Transformations
Global Transformations
Local Transformations
Point Transformations
Translation-Based Operations

Local Transformations and Point Transformations (which encompass
tne large majority of the commands defined in C4PL) are the commands
which utilize the Cyto-HSS stage. These families of commands are
briefly outlined below. (For detailed information on any command,
reference the C4PL EPICAL Reference Manual.)

3.1 LOCAL TRANSFORMATIONS OVERVIEW

Local Transformations are image processing operations that use
the value of the neighboring pixels to determine the new value of each
pixel.

The types of local transformations of the EPICAL Library include:

Cellular Transformations
Edge Detection
Filters
Maxima/Minima
Morphological
Shading

5



EJM

3.1.1 Cellular Transformations Overview

Cellular Transforms are image processing operations that perform
neighborhood tranformations. Cellular tiansforms in the EPICAL
Library include:

Ave4 Calculates the average of a subset of the
3 by 3 window (east, west, north and south),
not including the center

Ave5 Calculates the average of a subset of the
3 by 3 window and then averages this value with
the value of the original center

Ave8 Calculates the average of all eight neighbors,
not including the center

Ave9 Calculates the average of the neighbors of the
3 by 3 window and then averages this value with
the value of the original center

Aver Replaces each pixel with the average of a
specified set of its neighbors

Clampcen Donut filter primitive. Eliminates
discontinuities in the image by chopping off
peaks and filling in negative-going valleys

Convolve Performs a convolution using a 3 by 3 kernel
Countnei Changes the state of each active pixel to the

total of its active neighbors, not including
the center

Countwin Changes the state of each active pixel to the
total number active neighbors, including
the center

Findends Finds endpoints of lines in specified state
Findtees Finds T-connections in a rectangular skeleton,

assuming 4-way connectivity
Markends Marks endpoints 3f lines in specified state
Marktees Marks T-connections in a rectangular skeleton,

assuming 4-way connectivity
Match Transforms all pixels whose neighbors match the

specified pattern
Peakdete Detects the peaks (i.e., local maxima)
Peelhex Performs a series of hexagonal 2-D erosions on

all objects in a specific state, modifying the
state of the main regions and leaving the
periphery in the original state

Shift Translates an image by a specified distance in the
specified compass direction (N, NE, E, SE, S,
SW, W or NW).

Span Conditionally dilates pixels in an image
Spandisk Conditional 2-D dilation by a disk
Spanduod Conditional 2-0 dilation by a duodecagon
Spanv Conditionally dilates pixels in an image over

selected neighbors
Tran Conditionally transforms the pixels in an image

6



Tranb Conditionally transforms the pixels in an image
using all selected neighbors

Tr~j ,x Conditionally transforms the pixels in an image
using exactly the selected neighbors

Trans't Translates the active image X pixels to the
east, and Y pixels to the south

Tranv Conditionally transforms the pixels in an image
using selected neighbors

See also: Edge detection/gradient extraction, filters,
maxima/minima, and morphological transforms

3.1.2 Edge Detection/Gradient Extraction Overview

The Edge Detection/Gradient Extraction routines preserve and/or
enhance the regions of the image with local discontinuities. There
are a very large number of techniques of this type, and each has
different characteristics depending on the nature of the image, the
objects of interest, and any noise or distortions present. Several
different routines have been included in EPICAL, and more are being
added as they evolve.

The following edge detection/gradient extraction operations are
available in EPICAL:

Diffi Takes the directional first difference of an
image in the specified direction

Diff2 Takes the directional second difference of an
image in the specified direction

Getedge4 Maximum of the local maxima of directional
gradients in the north-south and east-west
directions only, in rectangular coordinates

Getedges Maximum of the local maxima of all directional
gradients in rectangular coordinates

GradEW Gradient in the east-west direction
Gradient Maximum of all directional gradients in

rectangular coordinates
GradNESW Gradient in the northeast-southwest direction
GradNS Gradient in the north-south direction
GradNWSE Gradient in the northwest-southeast direction
Grad4 Maximum of north-south & east-west gradients
SlopeEW Synonym for Difflxx
SlopeNS Synonym for Difflyy
Sobel Performs a Sobel edge detection using a 3 by 3

neighborhood on a rectangular image
Sobeldir Computes the Sobel edge direction values

7



ERIM

3.1.3 Filters

Filters are used to remove noise, such as details and distortions
in the image outside the size range of interest which can cause
difficulties and inaccuracies in processing the image. The filters
listed below remove both light and dark (foreground and background)
noise. To remove only one or the other type of noise use an opening
or a closing. Many of the filters are iterative, progressively
operating on the image with sequentially larger versions of the
specified structuring element. This has the effect of removing larger
and larger noise features.

2-D/Binary Filters

2D filters take a binary (or multi-state) image as input. The
specified state is filtered, and the pixels which are changed can be
put into another specific state. These filters will remove small
regions, fill in small holes in blobs, and smooth the outlines of
regions.

These filters can also be used to extract the small details.
After filtering, the pixels which are different from the original
image can be extracted (e.g., using an image subtraction) and used in
subsequent algorithm steps.

3-D/Greyscale Filters

These filters treat the image data as a continuous sequence of
increasing values. They treat the two-dimensional array of eight-bit
pixels (the imige) as a three-dimensional surface, with the value of
each pixel representing the height of the surface at that point. In
reality, the pixel value may represent intensity, range, color, or any
other type of data value. These operations perform a neighborhood
transformation over a three-dimensional neighborhood in rectangular
coordinates. There is currently no software support for a
three-dimensional hexagonal (footprint) neighborhood.

3-D/greyscale filters can be used for background normalization.
Background normalization refers to a method of solving a common
problem with grey-level images. The problem occurs when objects of
differing depths/brightnesses need to be recognized on a varying
background. Simple thresholding would not work because different
objects may not have the same threshold, and the background itself may
contain values above the threshold. The basic idea is to remove the
objects from the background. This resultant image is then subtracted
from the original image, causing the background to be removed. The
objects are then readily discernable from the new background.

The following 2D/binary filters are available in EPICAL:

DiskFil Disk filter-synonym for IsoFil2D

8



~ERIM

Hullfil Performs an Iterative filtering of an image by
successively taking the convex hull of the
foreground and background

IsoFil2D 2D Iterative isotropic filter

The following 3D/greyscale filters are available in EPICAL:

ArchFiEW Iterative filter using an arch oriented in the
east-west direction

ArchFiNS Iterative filter using an arch oriented in the
north-south direction

AutoMedian Pseudo-median filtering
ClampCen Clamp center (donut filter primitive)
ConeFil Iterative filter using a cone
ConeTipF Iterative filter using a cone with the origin

at the tip
CubeFil* Iterative filter using a cube
CylFil* Iterative filter using an upright cylinder
DonutFil* Iterative filter using a donut (ring shaped)

structuring element
DonutlFi*- First order donut filter (seven of eight

neighbors)
Filterby Iterative filter with specified structuring

element
Gaussian Convolves image with Gaussian kernel of

specified size
HoleFil* Remove (fill in) holes (isolated dark pixels)
IsoFil3D 3-D isotropic filter-synonym for SphereFi
Median Replaces center pixel values with the median

of the neighborhood values
PyramidF Iterative filter using a pyramid
SphereFi* Iterative filter using a sphere
SpikeFil* Filter (remove) spikes (isolated bright pixels)
WallFiEW* Iterative filter using a wall oriented in the

east-west direction
WallFiNS* Iterative filter using a wall oriented in the

north-south direction

*Can also be used on binary images (but not multi-state images).

See also: Openings, Closings

3.1.4 Maxima And Minima Transformations Overview

The following Maxima and Minima operations are available in
EPICAL:

LMax Local Maximum--replaces center pixel with the
maximum of the specified neighbors

9



ERIM

LMin Local Minimum--replaces center pixel with the
minimum of the specified neighbors

Max30 Replaces each pixel with the maximum of the
neighbors value

MaxEW Retains only those pixels which are a maximum
with respect to their neighbors in the east-west
direction

MaxexO Replace the center pixel with the unbiased
maximum of the neighborhood pixels except, when
the center is zero

MaxNESW Retains only those pixels which are a maximum
with respect to their neighbors in the
northeast-southwest direction

MaxNS Retains only those pixels which are a maximum
with respect to their neighbors in the
north-south direction

MaxNWSE Retains only those pixels which are a maximum
with respect to their neighbors in the
northwest-southeast direction

MaxovO Replace the center pixel with the unbiased
maximum of the neighborhood pixels, only if the
center is zero

Min3D Replaces each pixel with the minimum of the
neighbors values

MinEW Retains only those pixels which are a minimum
with respect to their neighbors in the east-west
direction

MinexO Replace the center pixel with the unbiased
minimum of the neighborhood pixels, except when
the center is zero

MinNESW Retains only those pixels which are a minimum
with respect to their neighbors in the
northeast-southwest direction

MinNS Retains only those pixels which are a minimum
with respect to their neighbors in the
north-south direction

MinNWSE Retains only those pixels which are a minimum
with respect to their neighbors in the
northwest-southeast direction

PeakDete Retains only those pixels which are a peak with
respect to their neighbors

3.1.5 Morphological Transformations Overview

Morphological Transformations are local image processing
transformations based on geometric operations for image enhancements
and shape analysis. The types of morphologicai transformations in the
EPICAL library include:

2-0/Binary Transforms

10



3-D/Greyscale Transforms
Closings
Convex Hulls
Conditional Dilations
Dilations
Erosions
Openings
Skeletons
Size Encoding

See also: Cellular Transforms, Filters, Closings, and Openings

3.1.5.1 Binary(2-D) Transformations Overview

Two-dimensional image-processing commands are used to alter a
digital image, taking into account the values of pixels which are
adjacent to each other in the image.

SPAN and TRAN commands.

Span and Tran are the oldest 2-D image processing commands and
have been superseded by the more general MATCH command. Though these
two commands take the same parameters, the parameters have different
names reflecting the conceptual difference in the commands. A span
(dilate) command conceptually takes pixels in the source state and
grows outward from the source over pixels in the medium state,
changing medium state pixels to the resultant wave state. The tran
(transform) commands conceptualize the transformation the other way
around: if the pixel in the specified center state is surrounded by
the specified configuration(s) of pixels in the neighbor state, then
the center pixel is changed to the output state. (Note than any span
command can be changed to a corresponding tran command by specifying
neighbor = source, center = medium, output = wave, and reflecting the
neighborhood specification (if any) across the center).

HEXFLG may be reset whenever a SPAN or TRAN command is given. To
set it to true (i.e. use the hexagonal mode), append an H to the
command (SPANH, TRANH). To set it to false, (i.e. use the rectangular
mode), append an R to the command (SPANR, TRANR).

A special transformation can be enabled by giving a parameter
value of "ALL" (meaning over any center or medium). The center or
medium is transformed to the output state whenever the transformation
test (neighbors of the specified value in the specified configuration)
succeeds, regardless of original center or medium value.

See also: Cellular Transformations.

11



3.1.5.2 Greyscale(3D) Transformations Overview

A group of commands is included in C4PL which process image data
in a 3-D manner. These commands treat the two-dimensional array ofeight-bit pixels (the image) as a three-dimensional surface, with thevalue of each pixel representing the height of the surface at that
point. In reality, the pixel value may represent intensity, range,
color, or any other type of data value. These operations perform aneighborhood transformation over a three-dimensional neighborhood inrectangular coordinates. There is currently no software support for a
three-dimensional hexagonal (footprint) neighborhood.

See also:

Closings
Dilations
Erosions
Filters
Openings

3.1.5.3 Closings Overview

A Closing is a dilation followed by an erosion with the same
structuring element. Closings remove isolated dark points,
concavities and background regions smaller than the structuring
element which is used. The following closings by structuring elements
are available:

ClArchEW Closing by an arch oriented in the
east-west direction

ClArchNS Closing by an arch oriented in the
north-south direction

ClConeTi Closing by of a cone with the origin at
the tip

CloseCon Closing by a cone
CloseCub Closing by a cube
CloseCyl Closing by an upright cylinder
CloseDis Closing by a disk
ClosePyr Closing by a pyramid
CloseSph Closing by a sphere
CIWaIIEW Closing by a wall oriented in the

east-west direction
ClWalINS Closing by a wall oriented in the

north-south direction
ProperClosing Filtering operation to remove localized

dark features

See also: Openings and Filters.

12



3.1.5.4 Convex Hulls Overview

A convex hull is the smallest convex shape which contains the
figure. This is roughly equivalent to placing a rubber band around
each connected region of foreground pixels, changing the pixels which
are in the concavities and holes. The convex hull routines in EPICAL
compute approximations limited by the digital grid space. Increasing
the number of sides used improves the accuracy, but increases the
execution time. The following convex hull transformations are
available in EPICAL on two-dimensional (binary or multi-state) images:

Hulll2 Duodecagonal (twelve sided) hull
(hexagonal grid)

Hul116 Sixteen-sided hull (rectangular grid)
Hull4 Rectangular hull (rectangular grid)
Hull6 Hexagonal hull (hexagonal grid)
Hull3 Octagonal hull (rectangular grid)

3.1.5.5 Conditional Dilations Overview

The following Conditional Dilations are available in the EPICAL
Library:

Match Transforms all pixels whose neighbors
match the specified pattern

Span Conditionally dilates pixels in an image
SpanDisk Span Disk (Rectangular)
SpanDuod Span Duodecagonal (Hexagonal)
Tran Conditionally transforms the pixels in

an image

3.1.5.6 Dilations Overview

The following Dilations by 3-0 structuring elements are available
in the EPICAL Library:

DArchEW Dilate by an arch oriented in the east-west
direction

DArchNS Dilate by an arch oriented in the north-south
direction

DCone Dilate by a cone
DConeTip Dilate by a cone with the origin at the tip
DCube* Dilate by a cube
DCyl* Dilate by an upright cylinder
Dilate Expands an image, treating it as a

three-dimensional surface
DPyramid Dilate by a pyramid
DSphere Dilate by a sphere
DwallEW* Dilate by a wall oriented in the east-west

13



_;RIM

direction
DwalINS* Dilate by a wall oriented in the north-south

direction
Lmax* Replaces the center pixel with the maximum of

the enabled neighborhood pixels
Match Transforms all pixels whose neighbors match

the specified pattern
Span Conditionally dilates pixels in an image
Spandisk Conditional 2-D dilation by a disk
Tran Conditionally transforms the pixels in an

image
2-D Dilations Dilations on 2-D binary/multistate images

*Can also be used on binary (but not multistate) images

3.1.5.7 Erosions Overview

Erosions by the following 3-0 structuring elements are available
for use in the EPICAL library:

EArchEW Erode by an arch oriented in the east-west
direction

EArchNS Erode by an arch oriented in the
north-south direction

ECone Erode by a cone
EConeTip Erode by a cone with the origin at the tip
ECube* Erode by a cube
ECyl* Erode by an upright cylinder
EPyramid Erode by a pyramid
Erode Shrinks an image, treating it as a

three-dimensional surface
ESphere Erode by a sphere
EwallEW* Erode by a wall oriented in the east-west

direction
EwallNS* Erode by a wall oriented in the north-south

direction
Lmin* Replaces the center pixel with the minimum of

the enabled neighborhood pixels
Match Transforms all pixels whose neighbors match

the specified pattern
Span Conditionally dilates pixels in an image
Spandisk Conditional 2-D dilation by a disk
Spanduod Conditional; 2-0 dilation by a duodecagon
Tran Conditionally transforms the pixels in an

image
2D Erosions Erosions on 2-D binary/multistate images

*Can also be used on 2-0 binary (but not multistate) images

14



3.1.5.8 Openings Overview

Opening is an erosion followed by a dilation with the same
structuring element. Openings remove isolated bright points,
convexities and foreground regions smaller than the structuring
element which is used. The following openings by structuring elements
are available:

OpArchEW Opening by an arch oriented in the
east-west direction

OpArchNS Opening by an arch oriented in the
north-south direction

OpConeTi Opening by a cone with the origin at
the tip

OpenCone Opening by a cone
OpenCube* Opening by a cube
OpenCyli* Opening by an upright cylinder
Open~isk Opening by a disk (2-0 images only)
OpenPyra Opening by a pyramid
OpenSphe Opening by a sphere
OpWallEW* Opening by a wall oriented in the

east-west direction
OpWallNS* Opening by a wall oriented in the

north-south direction
Proper-Opening Filtering operation to remove localized

bright features

*Can also be used on 2-D binary (but not multistate) images

3.1.5.9 Skeletons Overview

A Skeleton is stick figure that results when a region is thinned
with a connectivity preserving algorithm. Mathematically speaking, it
is all of the pixels which are equidistant from two or more background
pixels. The skeletonizing routines in EPICAL remove pixels on the
perimeter of the foreground regions if they are not on the skeleton.
These routines work from only one direction on each step, proceeding
sequentially around the regions so that thin lines will not be broken.
Skeleton procedures available in EPICAL are:

SkeIHex Produces a skeleton with hex
connectivity (hexagonal grid)

SkelRec4 Produces a skeleton with N,
S, E, and W connectivity (rectangular
grid)

SkelRec8 Produces a skeleton with eight
neighbor connectivity (rectangular grid)

In addition, the following routines are available which
thin the foreground regions from only a single direction:

15



RI

ReduceE Reduce from the east side
ReduceN Reduce from the north side
ReduceS Reduce from the south side
ReduceW Reduce from the west side

3.1.5.10 Size Encoding Overview

Size Encoding is the labeling of each foreground pixel with a
value representing its distance to the nearest background regions.
Functions of this class are called distance transforms. The following
size encoding routines are available in EPICAL:

SizeEncdR Size encoded erosion of an image by a 45-degree
cone (pyramid) whose origin is at its tip
(rectangular grid)

PeelHex Performs a series of hexagonal 2-D erosiuns an
all objects in a specified state, modifying the
state of the main regions and leaving the
periphery in the original state on each pass

3.1.6 Shading Overview

Shading operations treat a grey-scale image as a
three-dimensional surface and selectively lighten or darken the image
to provide the appearance of depth due to directional illumination.
The following shadings are available in EPICAL:

Shade Shade a grey-scale image as if there were a
light source in the upper right hand corner
of the screen

Shadow Shadow a grey-scale image as if there were a
light source in the upper right hand corner of
the screen, given the length of the shadow
to cast

See also: Plot3D

3.2 POINT TRANSFORMATIONS OVERVIEW

Point Transformations are operations that take in one image and
modify the pixel values based only on the values themselves; that is
they ignore the neighborhood of pixels around them.

The pixel transformations performed by the commands in this
category are actually carried out in the hardware of the Cyto-HSS. In
each stage a 256 by 8 lookup table--the PRAM (Point-transform Random
Access Memory)--is used. This table is loaded with the desired pixel
values, and the original value serves as an index into this table.

16



AMEMM
Then no transformation is desired, the table is bypassed. This means
that these operations are carried out quickly and, in fact, take no
additional time when done in concert with other operations performed
by the stages. Any transformation is possible, and a number of useful
ones have been included in EPICAL. The EPICAL commands that perform
point transformations are briefly described below.

Abs Takes the absolute value (i.e., values 128 to
255 are mapped into values of 127 to 1)

BitAnd Logical ANDs between two bit planes
BitClear Sets the bit plane to zero
BitClr Synonym for Bitclear
BitCopy Copies a bit plane
BitNot Logical complement of a bit plane
BitOr Logical OR between two bit planes
BitRot Rotation (barrel shift) of the bits of each

pixel
BitSet Sets a bit plane to one
BitSwap Exchanges two bit planes
BitXor Logical exclusive-OR between two bit planes
Cover Covers one pixel value with another
Exch Exchanges two pixel values
Exp Exponential function
Log2 Function returning log base 2 of an argument
LogE Natural logarithm function
OnesComp Ones complement of an image
Prune Changes pixel values within a given range
Quant Sets the pixels in a given range (or ranges) to

a single value (or values)
Remove Sets all values within a specified range to zero
Scale Scales the pixels by multiplying, dividing or

adding constants to the values
ScaleRem Produces a remainder image consistent with SCALE
SetDR Sets the dynamic range of an image by rescaling

pixel values based on the range of actual values
present

Slice Segments an image into two states at a specified
threshold level

SQRT Square root function
SQR Square function
Threshol Sets all values below a specified level to zero
TwosComp Twos complement of an image

17



RIM

4.0 WHAT IS "STAGECODE"?

Stagecode is the data that is loaded into a stage to configure
its hardware calculation circuitry and load constant registers and
lookup table RAMs. This data defines the transformation to be
performed by the stage. At the hardware level, a stagecode block for
one hardware stage consists of 790 or 798 bytes (eight-bit bytes) of
data. The longer 798 byte data block is provided to program Cyto-HSS
chip stages. All stage types (board and chip) support the 790 byte
format data block.

C4PL abstracts the data block necessary to program the stage into
two distinct types. These types are neighborhood transform operations
and point transfnrm operations. Although one hardware stage can be
programmed to perform two transforms simultaneously (one of each
type), C4PL (for reasons of logical clarity and system software
considerations relating to the handling and optimization of sequences
of stage operations) deals in stage code blocks of these two distinct
types. These stage code types will be discussed in detail in
subsequent sections.

At this point, we must clarify the terminology used in C4PL
regarding stage code blocks. C4PL handles stage program information
in a hierarchically structured way. At the lowest level are the
actual data values that will ultimately be programmed into the stage
hardware registers and lookup tables. Groupings of this data are
formed to create the two distinct types of transformations possible in
the stage. These data blocks are known as "stageops," or stage
operations. Stageops, in turn, are grouped into sequences that can be
identified uniquely in C4PL as "stagecode" and stored in C4PL
variables. A stagecode variable in C4PL amounts to a list of
identifiers, each of which identifies a stageop. A stageop can exist
independently in a C4PL variable, although this is unusual. The
hierarchy of stage program data organization is shown in Figure 1:

19



~RM

Stagecode:

Stageops:

I #opsj

loplidi ----------------------------- > I optypel

jop2idl ---------> I optypel lRAMtypej

JRAMtypej IpgmdataJ stage
... ...- -program

Ipgmdatal I etc... I data

I etc...

FIGURE 1. Hierarchy of Stage Program Data Organization

Fundamentally, it is the stage program data in stageops that one
creates and modifies to produce unique image transformations to be
performed within the Cyto-HSS stage. However, the current context of
stage data may vary depending on how it is created or manipulated, and
this context must always be kept in mind. Stage data may be created
directly and stored in C4PL array variables; or it may exist as a
stageop variable where it is accessed by indexing; or it may only
exist in the context of a stagecode variable, where it may still be
accessed through indexing. Indexing into stageops must take into
account the header information resident in the stageop variable.

Stage program data is always of C4PL type TBYTE, that is,
eight-bit unsigned integers. Calculations used to produce stage
program data may use higher precision, but a scaling or truncation
operation must be performed prior to placing such data in stagecode.
For example, data may be created as TINT (32-bit signed integer)
arrays, then placed in stagecode through the ArrayToCode command.
This command requires TBYTE type data as input, so the TINT array
must be explicitly converted to T BYTE prior to use of the ArrayToCode
command. This conversion may be done with the MakeArray command.

The structure and content of stageops will now be defined
further. Point transformation-type stageops will be discussed first,
then neighborhood transformation-type stageops will be described. In
the discussions that follow it is assumed that the reader has reviewed
the Stage Programmer's Manual [1] to gain some familiarity with the
operations that are perTormed within the stage.

20



RIUM

4.1 POINT TRANSFORMATIONS

The PRAM (Point Random Access Memory) operation is a simple
macping of each pixel value to some new value. A input pixel's
neighbors have no effect on this operation. A PRAM stageop data block
consists of information about the contents of the 256-byte PRAM in the
stage. A PRAM operation is expressed mathematically and graphically
in Figure 2:

new c = f(c)

f --- --- ---ta

c I -- > Inew_cI

FIGURE 2. A PRAM Operation

Stageops of the point transform type are arrays of bytes in the
order and with meanings as shown in Figure 3:

I optype (PRAM) I

I RAMtype (RAW,ASCEND,DESCEND) I

PRAM 0 (not present if RAMtype -=RAW)

etc...

I PRAM 256 (not present if RAMtype -=RAW) I

FIGURE 3. Organization of PRAM Stageop Data

4.1.1 OpType

The first byte of all stageops defines the type of stageop.
Point transformation operations have the predefined type PRAM.

4.1.2 RAMtype

The second byte defines the PRAM section of the subsequent data
in the block. Three options are defined: RAW, ASCEND, and DESCEND.RAW means that all 256 locations of the PRAM are explicitly specified

by 256 bytes of data that follow the RAMtype byte. ASCEND indicates
that no data follows the RAMtype byte, and the PRAM is to be filled
with data that defines a straight-through mapping (i.e.,
data=address). DESCEND indicates no data follows the RAMtype byte,

21



1M

and the PRAM is to be filled with an inverting mapping
(i.e., data=NOT(address)).

4.1.3 PRAM Data

Either 0 or 256 bytes of data follow the RAMtype stageop
parameter, depending on that parameter's value. This data will be
programmed into the PRAM lookup table within the stage and defines the
desired PRAM output value for each PRAM input value (a point-to-point
mapping). This RAM consists of 256 bytes due to the 8-bit pixel
resolution of the stage and data paths within the Cyto-HSS.

4.2 NEIGHBORHOOD OPERATIONS

A neighborhood transform operation consists of data for the stage
control registers (of which there are 22 or 32 depending on the stage
hardware to be programmed) and information relating to the contents of
the 512-byte NRAM (Neighborhood Random Access Memory). Neighborhood
transform operations are those operations that produce a new pixel
value for each input value based on some function of the original
pixel and one or more of its 8 neighbors. This function can be
expressed in Figure 4:

newc = f(ne,e,se,s,sw,w,nw,n,c)

I nw I n I ne I
--- f

I w I c I e I -- > I new_c I

I sw s se I

FIGURE 4. An NRAM Operation.

Stageops of the neighborhood transform type are arrays of bytes
Nhere each byte has meaning as shown in Figure 5:

22



ERIM

optype (XFORM,XFORM2) I

RAMtype (RAW,LNRAMOHNRAMO,BOTHO) I

control register I

etc...

control register N (N=22 or 32)

I NRAM 0 (not present if RAMtype=BOTHO)I

etc...

NRAM N (not present, or N=256,512) I

FIGURE 5. Organization of NRAM Stageop Data.

4.2.1 OpType

The first byte of all stageops defines the type of stageop.
Neighborhood operations may be one of two predefined types: XFORM or
XFORM2. Type XFORM specifies a short code block containing 22 bytes
of control register information. Type XFORM2 specifies the long
program containing 32 bytes of control register bytes.

4.2.2 RAMtype

The second byte defines the NRAM section of the subsequent data
in the block. Four options are defined: RAW, low-half NRAM all
zeros(LNRAMO), high-half NRAM all zeros (HNRAMO), and both halves all
zero (BOTHO). RAW means that all 512 locations of the NRAM are
specified by 512 bytes of data that follow the control register data.
LNRAMO indicates that 256 bytes of data follow the control registers
and that these 256 bytes specify the high half of the NRAM (the low
half is to be filled with all 0 data). Similarly, HNRAMO indicates
that 256 bytes follow the control register data and that these 256
bytes specify the low half of the NRAM (the high half is to be filled
with all 0 data). BOTHO indicates that no NRAM data follows the
control registers, and that the entire NRAM is to be filled with
zeros.

4.2.3 Control Registers

Control register data is organized in the order specified in the
Stage Programmer's Manual [1]. A XFORM stageop will have 22 bytes of
data and a XFORM2 stageop will have 32 byte positions. Figure 2 in

23



RIM *

the referenced document (page 9) shows the layout and meaning of the
control register data for the 22-byte format. Figure 6 (page 26)
shows the XFORM2 register format. Note that only 31 byte-wide control
registers are defined in the long stage program format. The XFORM2
stageop data block definition allocates 32 bytes for the control
registers for reasons relating to byte/word alignment. The extra byte
is placed at the end of the 31 bytes of control register data and the
value of this byte is of no importance. However, when indexing into
XFORM2-type stageops, this dummy byte must be taken into account when
calculating offsets to access NRAM data bytes (if present).

4.2.4 NRAM Data

Either 0, 256, or 512 bytes of data follow the control register
data, depending on the value of the RAMtype paramter in the stageop
definition. This data will De programmed into the NRAM lookup table
in ascending address order within the stage, and defines the desired
NRAM output value for each combination of neighbor pixel test
condition evaluation results.. The NRAM consists of 512 bytes because
there are 9 neighbors in the 3 by 3 transformation window. The NRAM
is accessed with a 9-bit address formed by the result (true/false) of
the programmed evaluation cindition (as specified by the control
registers) for each of th: nine neighbors. The bit position
assignmert within this address for each neighbor test result begins
with the northeast neighbor at bit 0 (the low-order bit) and proceeds
clockwise around the 3 by 3 window. The center pixel test result
provides bit 8 (the high-order bit) of the NRAM address vector.

24



5.0 WHY MESS WITH STAGECODE DIRECTLY?

Many C4PL users will never need to understand nor manipulate
stagecode directly. The C4PL language exists to provide an abstract,
structured, and powerful 'front-end" to the Cyto-HSS hardware. The
language shields the user from having to be knowledgable about the
intricacies of the hardware itself and from having to program image
transformation operations at a language level that is unsuited to the
operation being performed.

There may come a time, however, when the user wants to perform an
operation that doesn't quite fit within the parametric constraints of
the commands provided by C4PL. It is also possible to conceive a
stage operation unlike anything that C4PL provides (this is an unusual
situation given the breadth of commands and options within C4PL).
These are the times when direct stagecode manipulation or generation
may be required.

5.1 MODIFICATION OF STAGECODE

An example of a minor modification to an existing C4PL command
follows. Suppose you want to find all 4-way connected cross points of
pixels in 3tate 5. A Match command specification to do this and save
the resulting stagecode is as follows:

declare code ; create a variable to hold stagecode

Match 2 '5 5 '5 & ; create transformation, put in code
5 5 5 &

~5 5 -5 -> ,code

The code that results from this Match command is a XFORM-type
stageop that would program all neighbor contribution values to equal
-5, set the test condition for each neighbor for "equal 0", and put
the output state (2) in appropriate locations in the high half of the
NRAM. All other locations in the NRAM would be set to zero. The NRAM
address vector generated in the neighborhood calculation logic in the
stage would produce an NRAM output of either 0 or 2, depending on
which neighbors pass the test. The output selection logic would pass
the NRAM output on to the PRAM if it is non-zero, or the original
center pixel value if the NRAM output is zero. The PRAM (although not
specified in the stagecode that results from this Match command) would
be set to an data=address or "straight" pattern to pass the output of
the output selection logic through unaltered.

Now, suppose you want to mark all cross points having a center
pixel state of 5 or greater. The Match command does not allow a pixel
state specification of ">=5" or ">4", so the desired transform cannot
be specified directly. But the stage can perform this desired

25



, ERIM

operation. A 'greater than or equal to 5" test on the center pixel
value can be specified by setting the test condition for the center to
check for a 'carry" instead of an "equal to." Stagecode to perform
this modified Match operation can be generated using the code that
results from the Match command above and modifying it as follows:

; define symbol for 15th byte of stageop (center control)
syn c-control "15"

; neighbor test control bits = "01" (carry out)
syn carry_out "2"

; change center test to carry instead of equal zero
code[l][c_control] := code[I][ccontrol] I carry

This operation modifies the Test Control bits (TC1,TCO) in the
neighbor control register for the center pixel to select the "carry"
(0,1) condition instead of the "equal zero" condition (0,0). There is
only one stageop in "code" (since it was declared just prior to the
Match command), hence the first index is 1. The second index, or
offset into the neighborhood transform stageop is 15. This value is
required because the center pixel neighbor control register is the
13th byte of the stage program (see Figure 2, page 9 of the St
Programmer's Manual [1]), and there are two "header" bytes at e
begining of the stageop that define its type and RAM data content.

5.2 GENERATION OF STAGECODE

An example of an operation created by direct generation of
stagecode follows. When no C4PL command exists that can produce
stagecode similar to what is needed, then direct generation of
stagecode in arrays is appropriate. Suppose a unique scaling
operation was desired that would transform an image containing pixel
values in the range of 0 to 255 to the range of 128 to 255. This
could be done with a PRAM operation in a stage that maps each adjacent
pair of input values to one output value (0 and I map to 128, 2 and 3
map to 129, ..., 254 and 255 map to 255). A PRAM stageop to do this
transformation can easily be generated as follows:

declare pramarray,code,i ; array,code,loop vars
makearray T BYTE 256 -> pramarray ; 256 byte array
for i 0 255 ; fill with map data
pramarray[i+l] := (i/2)+128

endfor
arraytocode pramarray -> ,code ; convert to stagecode

In both of the examples above, the resulting stagecode in the
variable "code" can be applied to images with the Apply command:

26



REFfM

apply code I inputimage -> outputimage ; execute stagecode "code" once

More complex examples of stagecode modification and generation
are given later in this document.

27



6.0 C4PL FEATURES USEFUL FOR STAGECODE OPERATIONS

There are several commands and features of the C4PL language that
allow and facilitate direct operations on and generation of stagecode.
A brief description of each of these commands and features is
presented below. For more detailed information, the C4PL User's
Manual (2] or on-line help explanations may be referenced.

6.1 C4PL STAGECODE GENERATING COMMANDS

As seen in previous sections, there are dozens of commands
available in C4PL that generate stagecode. For many applications,
these commands provide more than enough power and flexibility to
process images as required, without the user having to have any
detailed knowledge of the stagecode that these commands produce.

Any C4PL or EPICAL command of the form

CommandName pl,p2... inputimage -> outputimage, code

returns the stagecode it generates to perform the requested operation
as an optional output. Stagecode is appended to variable "code" if it
is specified. If "code" is not already a stagecode variable, it will
be converted to one.

This command syntax for stagecode generating commands allows any
of these commands to be utilized for generation of stagecode for
subsequent customization by the user. The resulting code can be
accessed directly by indexing into the stagecode variable, or the
stageop or stageops contained in the stagecode variable can be
converted into arrays for subsequent manipulations.

The Match command is particularly useful for creating a
neighborhood transform stageop, and Cover is one command that may be
used to produce a point transformation (PRAM-type) stageop.

6.2 ARRAYTOCODE COMMAND

This command allows the user to put data from C4PL arrays (of
bytes) into a stagecode variable. The command does all the processing
necessary to construct the appropriate stageop and attach it to the
specified stagecode variable. Two different forms of the command
exist, one for each type of stageop in C4PL:

ArrayToCode 1NRAM hNRAM cntlregs inimage -> outimage, code

ArrayToCode PRAMarray inimage -> outimage, code

29



RIUM

Note that this command has the same syntax as any other stagecode
generating command in C4PL. The stage operation will be executed
immediately with the specified images if the "code" variable is not
specified. Otherwise, the stageop that results from the specified
array data is appended to the "code" variable.

6.3 CODETOARRAY COMMAND

This command is the inverse operation to ArrayToCode. It also
has two forms:

CodeToArray code opnumber -> lowNRAM highNRAM controlregs

CodeToArray code opnumber -> PRAMarray

The "opnumber" parameter specifies which stageop is to be
converted from the list of stageops contained in "code". Although
stageops may be manipulated directly via indexing, conversion to
arrays may be useful in some cases to allow calculations on the stage
program data to be done at higher precision.

6.4 APPLY COMMAND

Apply provides the means for executing stagecode once it has been
generated and stored in a stagecode variable. The syntax is:

Apply stagecode passes inputimage -> outputimage

The same stagecode may be executed multiple times on the same
inputimage by specifying a "passes" parameter greater than 1.

6.5 ARRAY OPERATIONS

Array operations and subarray notation in C4PL can provide
efficient means of creating stage program data in arrays. Arrays in
C4PL are similar to arrays in other programming languages. Whole
arrays can be specified as operands for arithmetic, relational, and
assignment operators. Array elements are referenced in the usual way
via an array name with subscripts.

Subarray notation provides convenient access to subsets of
arrays. It allows users to easily manipulate array information
without the use of time-consuming loops and element-by-element
indexing.

30



Stageops in C4PL can be treated as arrays. Images in C4PL can
also be accessed and treated as arrays. These capabilities present a
number of interesting possibilities, such as using image processing
operations to create data in an image which can then be converted to
and used as stagecode.

Array operations on stageops will only affect the stage data.
The optype and RAMtype header bytes will be unaffected. For example,
if "code" is a stagecode variable containing one PRAM type operation
(that has a "RAW" or fully specified 256-byte data block), then that
PRAM stageop may be directly set to all one value (e.g., 255) with the
following subarray expression:

code[1]1*] := 255

Please refer to the C4PL User's Manual section 4.2.3.1 "Arrays"
for detailed information on arrays and subarray notation [2], or
access the on-line help information.

6.6 STAGECODE ARRAY INDEXING

Array indexing of stagecode variables is possible in C4PL. This
makes direct array operations on stageops contained in stagecode
variables available to the user. Care must be taken to insure that
the desired data is being accessed at all times, however.

Recall that a stagecode variable is a list of identifiers of
stageops, which actually hold the stage program data. The stageop
which has the data also has a two byte header in it to identify the
type of operation and the type and amount of RAM data it contains. An
indexed reference to a data location in a stageop contained in a
stagecode variable must identify which stageop is being referenced as
the first index, and the byte in the referenced stageop as the second
index. For example, the first stage data byte of a XFORM type stageop
which is the first stageop in a stage code variable "code" can be
accessed as follows (note that in C4PL, all arrays are one-origin):

mode-control := code[I] [3]

Note that 3 is specified as the second index. This locates the
first stage data byte (the Mode Control register). The first two
bytes of the XFORM stageop identify the stageop type, and the RAM
type. The syntax is [m][n] because each index represents an index
into a different one dimensional array. A syntax of [m,n] would
represent a particular element of a single two dimensional array.

6.7 BIT-WISE LOGICAL OPERATORS

The relational operators & (logical AND), I (logical OR), and

31



(logical NOT) are very important for modifying particular bits in
stage program data bytes. Several stage program bytes contain bits or
bit subsets that control stage operation. These program bytes include
Mode Control, the bit masks (Input and Output), and the nine Neighbor
Control registers.

6.8 ROTATECODE COMMAND

RotateCode "rotates" the first stageop in a stagecode variable.
The stageop must be a neighborhood transform type stageop (rotation of
PRAM-type stageops has no logical meaning). Rotation in this context
refers to the rotation of the neighbor program data about the center
in the 3 by 3 neighborhood. Consider a stagecode variable produced
with a Match command, such as:

Match 2 # -1 1 &

1 1 ~1 &
# -1 -1 -> ,StageCode

A rotation of this StageCode by 90 degrees produces a different
stagecode:

RotateCode StageCode 90 -> ,NewStageCode

that is equivalent to a Match command specified as follows:

Match 2 # 1 # &
~1 1 ~1 &
-1 -1 -1 -> ,NewStageCode

Rotation of a stageop is accomplished by rotating the 8 neighbor
control registers, the 8 neighbor contribution values, and rearranging
the NRAM appropriately. In a 90-degree rotation the north-east
neighbor control and contribution would take on the values previously
contained in the north-west control and contribution registers. In
all, each neighbor register value would shift two positions around the
neighborhood in a clockwise direction. The NRAM rearrangement is
somewhat complicated at first glance, but it is simply a rearrangement
of data within the NRAM according to a rotation of the bits comprising
the NRAM address vector. The bits of the 9-bit vector correspond to
neighbors as follows:

C N NW W SW S SE E NE
8 7 6 5 4 3 2 1 0

Keep in mind that the NRAM is a b12-byte array with address
values from 0 to 511, and therefore a rotation of 90 degrees maps the
original data contained in each NRAM location to a new location
specified by an address which is the original address with the
low-order 8 bits rotated left (with wrap). For example, the NRAM data

32



ERIM

at address I (NE bit ON) would be placed in the new NRAM at address 4
(SE bit ON). Since the center does not rotate, each NRAM half is
treated independently. Therefore, a 90 degree rotation would also
take the data from address 257 (NE,C bits ON) and place it at new NRAM
address 260 (SE,C bits ON), and so on.

6.9 ROTATEARRAY COMMAND

The RotateArray command provides the same capability to rotate
stage program data as the RotateCode command; however, RotateArray
operates on data stored as arrays. This command allows input arrays
of 22 bytes (a standard stage control register block), 31 or 32 bytes
(a longstage control register block), and 256 bytes (an NRAM half).
The syntax is the same as the RotateCode command.

6.10 ASCENDINGPRAM

At some point in the near future, C4PL will have a system
constant 256-byte array containing data whose value equals the array
index (an "ascending" PRAM). This feature will relieve the user from
having to generate this type of data block. This type of array is
commonly used as a basis for customized PRAM stageops and will allow
more efficient generation of stagecode.

6.11 STAGEDEFS

An include file of C4PL synonyms for the stage program register
offsets and bit offsets into those registers that contain programming
switches will be available in C4PL. Descriptive names for the numeric
offsets into arrays containing stage program data greatly enhances the
readability, debugging and maintenance of procedures which generate
stagecode.

6.12 PRAMSET COMMAND

The PramSet command has the form:

PramSet Stateln StateOut Mask InputArray -> OutputArray

The PramSet command is similar to the Cover command, except the
input and output variables are arrays. It puts the masked value of
StateOut in all locations corresponding to an address of Stateln
(under the specified mask).

The purpose of a PRAM stageop is to map a particular input value
to a new value. When the stage input and/or output masks are in use,
the desired PRAM mapping becomes a little complicated. Masks are

33



typically used to prevent whatever neighborhood operation is
programmed in a stage from affecting particular bits of the image.

Suppose we are using the low-order bit of the image being
processed to hold some interesting information and we don't want
operations on the rest of the bits to affect the low-order bit state.
Now suppose we want to map pixel state 2 to state 4. In this
situation we would call the PramSet command with Stateln = 2, StateOut
= 4, Mask = 254 (OxFE), and the input array is ascending or straight
(date=address). PramSet will create an output array based on the
input array as follows:

Original: Modified:

Location 0: 0 0
Location 1: 1 1
Location 2: 2 4
Location 3: 3 5
Location 4: 4 4
Location 5: 5 5
Location 6: 6 6

The C4PL code fragment that implements the PramSet command is a
good example of the use of logical operators and array expressions in
C4PL.

statein := statein & mask
stateout :: stateout & mask
bool := (ascending pram & mask) = statein
outpram := inpram * (~bool) + ( stateout I inpram*(~mask) ) * bool
makearray TBYTE 256 -> outpram

Ascendingpram is a predefined 256-byte array whose data=address.
Bool is, therefore, an array of boolean values that defines the
addresses of the PRAM that will be modified with the stateout value.
The outpram then takes on either the corresponding value from the
inpram or a new value that is a combination of bits from stateout and
the corresponding inpram value as determined by the specified mask.

6.13 PRAMSWAP COMMAND

PramSwap swaps two values in a PRAM array under control of a
bitmask. This command is used when it is desired to exchange two
values in an image and is specified as follows:

PramSwap Statel State2 Mask InputArray -> OutputArray

34



IRIM

PramSwap puts the masked value of Statel in all locations
corresponding to an address of State2 (under mask). It also puts the
masked value of State2 in all locations corresponding to an address of
Statel (under mask). PramSwap is implemented in C4PL by a procedure
that makes two calls to the PramSet routine.

6.14 STAGEANALYZE COMMAND

This command in C4PL is essential for the programmer who is
attempting to generate user-defined stageops. Stageanalyze is a
utility that "disassembles" stageops. It provides a formatted output
detailing the programming information contained within a stageop or
series of stageops.

6.15 OTHER USEFUL COMMANDS

Several other C4PL commands and functions are typically used in
the construction of a C4PL procedure. Most of the commands and
functions listed below are described in the C4PL User's Manual,
Chapter 5 - Procedures [2].

Procedure syntax: Procedure, EndProcedure.

Variables/constants: gdeclare, declare, syn.

Argument checking: findarg type, type of, setdef, setret, etc.

Interactive/information: input, pause, wait, print, printl.

Control flow: break, for, if, repeat, while, etc.

Stagecode handling: loadcode, storecode, runout.

One good way to become familiar with C4PL procedure writing is to
examine several of the built-in procedures that implement many C4PL
commands.

35



ERIM

7.0 ARRAYS VERSUS DIRECT STAGECODE REFERENCES

In general, it is somewhat safer and perhaps easier to deal with
stage program data as arrays. The question of whether to build and
manipulate stage program data as arrays or in the form of stageops is
dependent on context, however. Which should be used depends on the
data that is to be created, and how it is to be used or modified.

Three reasons exist for operating in the array domain when
creating and manipulating stage program data. First, indexing into
stageops is more prone to error due to a need to account for the two
bytes of header information in each stageop. This means that indicies
for stageop data are offset by two from their usual value. The
correct index for the desired stageop must also be provided when
accessing a stageop contained in a stagecode variable. Second,
stageops are often encoded in compacted form through the use of the
RAMtype header byte. The stage programmer must take care that each
stageop being manipulated is well understood and that the RAM contents
of the stageop are known. C4PL will enforce array index limitations
on stageops as well as arrays, but this does not guarantee that the
programmer knows what kind of stageop is being manipulated. A
XFORM-type stageop may contain 256 bytes representing the high NRAM
half, but a programmer might erroneously assume that this RAM data
represents the low NRAM half (and will never know the difference
unless the RAMtype byte is checked, or until erroneous image
transforms occur). Third, stageops in C4PL are entities that are
utilized through reference, rather than instance. This means that it
is possible for multiple stagecode variables to exist that have
references to the same stageop. A chaige tu the stageop made via an
array reference through one stagecode variable will, therefore, affect
the other stagecode. If this linkage between stagecode variables is
unknown to the programmer, unexpected results will obviously follow.

After having made a strong case for using arrays to work with
stage program data, a qualifier must be inserted. In instances where
the stageops to be modified are well understood, and care is taken to
index into them correctly; then it is more efficent to access the
stageops directly rather than convert them to arrays, make changes,
then convert them back to stagecode.

37



E RIM

8.0 SOME EXAMPLES

As previously noted, several examples of stagecode generating
procedures exist within C4PL itself. Procedures implement many of the

EPICAL image processing commands. The C4PL procedure directory on
your system is accessible and these procedures can be copied to the
user's directory. This is an ideal way to get a running start--use an
existing procedure file as a template and modify it as needed.
Procedures are stored on VAX/VMS systems in a directory pointed to by
the C4PL defined logical name "c4plSproc". On other systems, the
appropriate directory may be deduced by looking at the default
command search search list for any directories that are used to
reference "*.def" files.

8.1 MARKTEES

This EPICAL procedure is a simple example of the use of the Match
command to build up a more complex image transformation. It does not
perform special stagecode manipulations. It is included here as an
example to point out that unique or specialized image transformations
can be built out of existing C4PL library commands without necessarily
having to resort to direct stagecode generation or manipulation. This
code is a simplified version of the actual C4PL routine.

39



ERIM

- ,''neca a ~r- :S- re '..A,--,

* CCE>RE NAME: 'Aark'ees

: 5S-q ZT: Mark T-:onnec:sns of lines ,n state :]State'

'NVRCNMENT: :PL 42.5

,SPEC:F:CAT:ON: MarkTees F3State 'eeState Connectivity
:nputimage -> Outputlmage StageCode

States 0 througn 255 are valid input parameters. For illegal
values, an er-cr message mill be output to the terminal.

The inout image ;s assumed to te the binary image of a
skeleton in :.State' in rectangular or hexagonal coordinates.
The output image is a binary image with the centers of the
tees in 'TeeState', provided that these centers were in
'FGState' in the original image.

;OESCRIPTION: All pixels in state 'FGState' in the input image which
are the triple-points (or "tees) of FGstate lines are
changed to the TeeState. The connectivity parameter
determines the configuration used by this procedure.
The word 'configuration' represents:

N-E-S-4 if 'connectivity' is 4 and we're
in rectangular mode

N-NE-E-SE-S-SW-W-NW if 'connectivity' is 8 and me're
in rectangular mode

N-NE-E-SE-S-W if we're in hexagonal mode

:IPUT PARAMS: FGState: roreground state default: I
- find tees in this state)

TeeState: output state default: 2
- mark tees found by changing

them to this state)
Connectivity: connectivity default: 4

- 4 - 4-way connectivity assumed for
input image

- 8 - 8-way connectivity assumed for
input image

- illegal values take default
InputImage: inout image default: active

;CUTPUT DATA: Outputlmage: output image default: active
StageCode: stage cod, repository default: default

(execute it)

;HI STORY:
Rev Date Author Description

0.0 08 JAN 90 :-t original code - derived from Pascal
external task

3.1 25 JAN 90 :' 3 cotimized via array expressions
0.2 02 FEB 90 -t clean up comments; change array name;

mask contribution bits with input mask

40



.3 1 . Z IK s O -,io i :r xm

*:e~~rSta~e ~ee~t :, :rnec:' i'y, :n:mage) - 2ut~rnage, 3*,:;Cce

:ec 'e rmnPos, ;osition on "nage arg in inout zara "43t
qm num, umber of image type inout :arams
je' num numoer of default inout Params

s n min state '0" ;efine valid state value range
syn maxstate '255'

S...... Set defaults for the arguments here.

setdef I -> FGState
etdef 2 - TeeState
etief 4 -> connectivity
5etdef active -> InImage

setret active -> OutImage

; ***" .... Check input parameters.

if ((typeof(FGState) < T DEFAULT) & (typeof(FGState) z TINT))
ERROR .... Foreground state must be an integer."

elseif ((FGState < min state) ( (FGState > max state))
ERROR "*'* Foreground state must be a value-from 0 to 255."

eiseif ((type_of(TeeState) < TDEFAULT) & (typeof(TeeState) < TENT))
ERROR "* Output state must be an integer."

elseif ((TeeState < min state) I (TeeState > max state))
ERROR ... Output state must be a value from 0 to 255."

endif

if ((type of(connectivity) < TDEFAULT) & (typeof(connectivity)< TINT))
ERROR "*** Connectivity must be an integer."

elseif ((type_of(connectivity) = TINT) & (connectivity - 4) &
& (connectivity <-8))

connectivity :- 4
,rintl "**" MarkTees -- Warning: Connectivity has been changed to 4."

endi f

; .**.*. ***** "*** ** Tell user if funny bit masks are used.

if ((INMASK < 255) 1 (OUTMSK < 255))
printi "'*" MarkTees -- Warning: Funny bit mask is in use."

endif

syn fg "FGState"

if HexMode
match TeeState ~fg FG &

FG FG ~fg
~fg FG 2 Inlmage -> Outlmage,stgcode



ERIM

I :-:mage 7> ut :,age, st-,cde

s ef c n n ec :'rti
14a zC'I lee St a te &

~fg R

Match TeeState -fg 4 G &
# FG -fg &

FG -fg FG 8 OR

,*Match TeeState # -fg FG &
4 FG -g &

FG -fg FRG 3 OR

Match TeeState -fg 4 FG &
FG FG fg' &
-fg 4 FG 8 OR

Match TeeState # -fg FG &
FG FG -fg &
# -fg FG 8 OR

Match TeeState -fg # FG &
FG FG -fg &
# fq~ FG 8 OR

Match TeeState # -fg FG &
FG FG -fg &
-fg # FG 8 Intmage ->Outtinage,stgcode

Endtf ;iHexMode or connectivity 4 or 8

EndProcedure ;MarkTees



, RIM
3.2 FINOTEES

The EPICAL procedure FindTees is coded as a procedure in C4PL
that uses arrays to set up a stage operation that finds T-type
intersections of pixels in a certain state (and assuming a certain
connectivity). The code presented here is a simplified version of the
procedure as it exists in C4PL.

FindTees differs from MarkTees, in that all points except those
that meet the "tee" criteria are changed to zero. Marktees only
changes the state of pixels that meet its neighborhood criteria--other
pixels are unchanged.

43



Environmental :esearzn mstitute of Michigan

2Dvrft - 990

mA CPO NAME: F~ndTees

S2S'RACT: Find T-connections of lines in state 'FGState' assuming

a certain connectivity.

;ENVIRONMENT: C4PL V2.5

;SPECIFICATION: FindTees FGState OutState Connectivity
[nputImage -> OutputImage StageCode

States 0 througn 255 are valid input parameters. For illegal
values, an error message Mill be output to the terminal.

The input image is assumed to be the binary image of a
skeleton in 'FGState' in rectangular or hexagonal coordinates.
The output image is a binary image of the center of the tees
found in the original image, in OutState, and all other
pixels are zero.

;DESCRIPTION: For all pixels in state 'FGState' in the input image, look for
3 or more neighbors in state 'FGState' in the configuration
given below. Whenever this is the case, change the center
pixel's state to 'OutState', otherwise change it to zero.

The word 'configuration' represents:
N-E-S-W if 'connectivity' is 4
N-NE-E-SE-S-SW-W-NW if 'connectivity' is 8 and we're

in rectangular mode
N-NE-E-SE-S-W if 'connectivity' is 8 and we're

in hexagonal mode

;INPUT PARAMS: FGState: foreground state default: I
- find tees in this state)

OutState: output state default: I
- mark tees found by changing

them to this state)
Connectivity: connectivity default: 4

- 4 - 4-way connectivity assumed for
input image

- 8 = 8-way connectivity assumed for
input image

- illegal values take default
InputImage: input image default: active

;OUTPUT DATA: OutputImage: output image default: active
StageCode: stage code repository default: default

(execute it)

;EXTERNAL: uses other C4PL ::rnmands: makearray, arraytocode, applycode

;1/0 & FILES: none

44



aev t'e it"or .escrpton

"8 JAN -0 g: orinal czde - ieri ied fr-m Pascal
external 'asK

25 JAN '0 1'n . ot~mized via irray expressions
3.2 36 FEB 30 irt clean up comments; change array lame;

nask contribution bits eitn input 'ask
0.3 05 MAR 90 It allow for image to be last input param
x.x 26 Apr 90 PaK simplified slightly to use as example

procedure (FGState, OutState, Connectivity, InImage) &
-> OutImage, StgCode

declare TempCode, & stage code being built
control reg, & for stagecode control registers
low nram, & ; first half of NRAM array
highnram, & ; second half of NRAM array
hex -node, & ; bit value for HEXMODE
cnt ; for-loop variant

gdeclare zw_bitxarray ; for saving bit counts per address

; * offsets into mode control register

syn max_ mode off "0" bit 3 off (do not use maxposition flags)
3yn dyn bias off "0" bit 2 off (no dynamic bias)
syn outcontrol "0" ; output control bits = "00" (Always NRAM)

; ** offsets into neighbor control registers

syn disable off "0" bit 3 off (disable neighbor switch is off)
syn disable-on "8" ; bit 3 set (disable neighbor switch is on)

;**w*******' ********** offsets into stagecode array

syn mode control "1" ; control and mask bytes
syn bias-value "2"
syn output-mask "3"
syn inputmask "4"

syn ne control "5"; neighbor control bytes
syn e control "6"
syn se control "7"
syn scontrol "8"
syn sw control "9"
syn w control "10"
syn nw control "11"
syn n control "12"
syn c~control "13"

syn ne contrib "14" ; neighbor contribution bytes
syn e contrib "15"
syn se contrib "16"
syn s_contrib "17"
syn sw contrib "18"
syn w contrib "19"
syn nw contrib "20"

45



ERIM

3, - z:,nrr 22
rtr,22'

:7nstants used in program

syn array start '" ;first element in NRam and PRam arrays
syn array-end '256' ;ast element in Nram and PRam arrays
syn NRam offset '255' i here high NRAM starts relative to full NRam

syn RegArraySize "22" ; number of bytes in stagecode registers
syn NRamArraySize '256' number of bytes in half NRam

syn min state '0" define valid state value range
syn maxstate "255"

syn equalzero 1'0" test control bits ' '00" (Equal Zero)
syn carry-out "2' test control bits -"01" (Carry Out)

; ''''"'*********"*'"*''**" Set defaults for the arguments here.

setdef 1 -> FGState
setdef I -> OutState
setdef 4 -> Connectivity
setdef active -> Inlmage
setret active 7> OutImage

; "*****"**"** '**** " Check input parameters.

if ((type of(FGState) < TOEFAULT) & (type of(FGState) p TINT))
ERROR "*** Foreground state must be an integer."

elseif ((FGState < min state) I (FGState > max state))
ERROR "*** Foreground state must be a value-from 0 to 255."

elseif ((type of(OutState) < TODEFAULT) & (typeof(OutState) < T_INT))
ERROR ""' Output state must be an integer."

elseif ((OutState < min state) I (OutState > max state))
ERROR "*" Output state must be a value from 6 to 255."

endif

if ((type of(connectivity) o T DEFAULT) & (type of(connecti'vity)<> TINT))

ERROR .*" Connectivity must-be an integer."
elseif ((type of(connectivity)-T INT) & (connectivity<.4) & (connectivity<>8))

connectiviy : 
4

printl " FindTees -- Warning: Connectivity has been changed to 4."
endif

; "If dynamic bias is on, turn off temporarily

if DYNBIA
printl FindTees -- Warning: Dynamic bias is temporarily being"
printl " turned OFF. (for FindTees operation only)."

endif

; -Tell user if funny bit masks are used.

if ((INMASK <> 255) 1 (OUTMSK z 255))

46



ERIM

-. t .... 4 ,e c.r'ent ex Mode if conrec. i
........ .. ... S 3. term ise, ex Mode is off for crn

Mf EAODE
4f ,connectivity = 3) mant Hex Mode to stay on if :onn 3

hex mode 16 bit 4 set
else connectivity = 4, so Hex Mode is of

hex mode :0 bit 4 off
printl FindTees -- 4arning: Hex Mode is temporarily being"
printl turned OFF. (for FindTees operation only).'

endif
else ; system Hex Mode is already off

hex mode := 0 bit 4 off
endif

; ************ fl**** t create the arrays

-nakearray T_BYTE, RegArraySize -> control reg
makearray TBYTE, NRamArraySize -> low nram
nakearray TBYTE, NRamArraySize -> high nram

; *****'*******'*****~****** Make a bit count array, first time only.
"**''**'*****"********* If this array exists globally, do not

; "****** *****'************" execute the code. (Hope that no one else
* 'has changed the values someplace else).

if (type of(zw bit xarray) <> t array)
makearFay T-byte, NRamArraySize -> zw-bitxarray
for cnt array start NRamArraySize
zwbitxarray[cnt] :- sum(cnt-1) count of bits at each address

endfor
endif

; -assign registers in control array

control reg mode control] := hex modelmax mode offldyn bias offlout control
control-reg[bias-value] :0 -
control-reg[output mask] :a OUTMSK
control reg[inputmask3 :I WAMASK

; *" Set up the neighborhood configuration N-E-S-W;
;* * * ** * * enable the others if connectivity is 8. Also

;******************"*" set the contribution bits in the same manner.

control _reg [n control :s disable off equal zero
control reg e-control : disable-off equal-zero
control-reg[s-contro : disable-off equal-zero
control-reg w control :- disable-off equal zero
controlreg [ccontrol : disable-off equal-zero

control regfn contrib] :- - ( FGState & INMASK )
control-reg [e -contribJ :- - ( FGState & INMASK )
control reg[s-contrib] : - ( FGState & INMASK )

47



- Io :zn-- %tate & :NMASK)
:ro _ 'eg LC: ctri~2 Ib:]tate &~ NMASK

c:rnec:'ct 4 connectity 4
-ontroregr1e control] jisaole on Icarry t
control reg~se control] lisable on Icarry-out
zontrol reg-n -~lrl I isaole on Iar u
control req Lsw-controlj disable-on !carry-out

control reg (ne contrib] 0
control req (secontrib 0
control reg [nwcontrib] 0
control reg (swcontribi 0

elsaif HEXMODE ;connectivity *8, hexmode =on

control req ~ne control] lisable off equalzero
c~ntrolreg (se control' disable_off equal zero
control reg (nw~hontrol J disable on carry-out
control req(sw control' udsable on carry-out

control re (ne contrib C FGState & INMASK)
control req9 se-contrib 3 FGState & INMASK)
control reg (nw contrib] 0
control req (sw-oti 0

else ; connectivity 8, hexmode *off
control req (ne control I disable off equal zero
control req (se control] disable off equal zero
control req Cnw control] disable off equal zero
control reg Lsw-control 3* disable-off equal zero,

control req [ne contrib] ( FGState & INMASK)
control req (secontrib] ( FGState & INMASK)
control req(nwcontrib - ( FGState & INMASK)
control req(sw-contrib] : - ( FGState & INMASK)

end if

**Set up NRAI4. In the first half (low portion) of the NRam, the center
Sfails the test so we want to output a zero. In the second half (high

** portion) the center passes the test so we want to count the neighbors.
***We need to see 3 or more neighbors to be a branch.

low~nram~array~start :array end] :- 0

high nram[*] :- (zw bit xarray[3,=-3)*OutState

; combine the arrays to form staqecode

arraytocode low nram, high nram, control reg -> ,TempCode

; *************** do the operation or store the code generated

if (type of(StgCode) - rUNDEFINED) ;was stgcode specified?
applycode TempCode InImaqe -> OutImage ;no--execute it

elseif (type of(StgCode) - T STAGECCDE) ;is stgcode stagecode?
StgCode :,; StqCode + remp~ode ;yes--append

else

48



Sttjj ernpCode ;~-K s s ir-st stageop

enaprocedure Findrees

49



8.3 SKEL4

The Skel4 routine provides an example of utilizing C4PL commands
to generate the stagecode desired, then tweeking it slightly to
produce interesting variations. Skel4 is currently an unsupported
routine available in C4PL. It uses the same Match neighborhood
specifications as thc SkelRec4 procedure in C4PL.

51



# 1RIM

Environmental cesearcn :nstitute f icvn;an

; cvright - 1989

;MACRO NAME: skel4

;:BSTRACT: Rectangular skeletonizing operation with 4-way connectivity.

;ENVIRONMENT: C4PL V2.5

;SPECIFICATION: skel4 ns fg flesh passes endpts singpts inimage ->
outimage, stgcode

Perform a skeletonizing operation that maintains 4-way
connectivity, ith endpoint and single point reduction as
options. A 'normal' skel changes the foreground state
to flesh state. 1f ns (neighbor state) is specified then a
conditional skel is performed, where the foreground is only
skeletonized where it is in contact with the ns. If
te forcground (fg) is not specified then all states are
skeletonized.
Conditional and 'all states' can NOT be combined.

;DESCRIPTION: Reduce foreground state by eating away from four successive
directions (E,S,W,N) without breaking 4-way connectivity of
foreground area. Operation must be applied sequentially in th
four directions so as not to reduce foreground to nothing in
one stage.

;INPUT PARAMS: ns: neighbor state default: default
fg: pixel state to skeletonize default: I
flesh: new pixel state default: 0
passes: number of passes default: 1
endpts: reduce endpoints flag default: false
singpts: eliminate single points flag default: false
inimage: input image default: active

:OUTPUT DATA: outimage: output image default: active

stgcode: stage code repository default: default
(execute it)

;EXTERNAL: uses other C4PL commands: match, setdef, setret, rotatecode,
typeof

;1/O & FILES: none

;HISTORY:
Rey Date Author Description

T fg-ar-8g pak original code - derived from Pascal
external task

0.1 6-Apr-89 pak generalized for conditional and all sts
0.2 15-May-89 pak change single pt neighborhood to produce

results of Pascal skelrec4 exactly
0.3 13-Sep-89 pak some optimizations for speed
0.4 06-Dec-89 pak changes in rotatecode->changes here

52



RIM

-rccecure s,:g,flesh,passes,enots,singptsinimage) -> outimage,stgcode

ec'3re :empnex, & temp storage for hexmode sys variable
'cex, & looo index
skeiccde, & mhole skeleton stage code
skelcodel, & first pass stage code
skelcode2, & second and subsequent passes stage code
stageop, & mork area for stageop tweeks for cond. skeis
stg prefix, & header pram
stgsuffix, & trailing pram
east, & test value for match, depends on conditional
tf temporary foreground variable

;* syns for control registers

syn mode control 3" ;1 +2 (we're indexing stageccde)
syn mode dyn bias '4"

syn ne contrib '16" ;14 +2
syn ecEontrib '17' ;15 +2
syn c contrib '24" ;22 +2
; "*~***W****W*'' '*"*w** **"" set defaults

no default for ns (if it's defaulted then we're not conditional)
; no default for fg (if ft's defaulted then we're to do all states)setdef 0 -> flesh ; skeleton flesh state is 0
setdef I -> passes ; one pass assumed
setdef false -> endpts , do not reduce end points
setdef false -> singpts ; do not remove single points
etdef active -> iimage

setret active -> outimage

#," *"*******************"***** parameter checking

if ((type of(ns) o T INT) & (type of(ns) < T DEFAULT))
printl "**skel4 ---Error: neighbor state not a valid type."
return

elseif (type of(ns) - T INT)
if ((ns < 6) 1 (ns > 255))

printi "***skel4 -- Error: neighbor state not in 0-255 range."
return

endif
endif

if ((type of(fg) o TINT) & (type of(fg) o T DEFAULT))
print] T***skel4 ---Error: forgFound not a valid type."
return

elseif (type of(fg) T INT)
if ((fg <) I (fg > 255))
printi ***skel4 -- Error: forground not in 0-255 range."
return

endif
endif

if ((type of(ns) o T DEFAULT) & (type of(fg) - T DEFAULT))
print] "**skel4 ---Error: can't do a conditional skeleton of all states."
return

endif

53



, 'IRIM

,,, -f:4'esn) <z> T_ NT)
r'nt 'sKe!4 -- Error: 'esh qot an 7nteger.'

,r'esn < 0) (flesn > 255))
;r;tl .... ske14 -- Error: esn iot in 0-255 range.'
return

endif

if (type_of(passes) o T !NT)
print] "'*skel4 -- Error: passes not an integer.'
return

elseif (passes < 0)
printi ....skel4 -- Error: passes is negative."
return

endif

if (typeof(endpts) < TBOOLEAN)
printl "**skel4 -- Error: endpts flag not a boolean."
return

endif

if (type of(singpts) o T_0OOLEAN)
printl "**skel4 -- Error: singpts flag not a boolean."
retuirn

endif

temphex :- false
if hexmode

printl "Warning - skel4 temporarily setting hexmode switch off"
temphex :: hexmode
hexmode :- false

endif

; some initializations

empty -> stg prefix ; makes these variables into stagecode

empty -> stg suffix

; set temporary foreground variable 'tf'

if (fg'>#) ; tf exists because of all states option. Normally tf-fg
tf : fg

else
tf : 0 ; could be anything 0-255 (should avoid dummy states)

endif

**********************''"' handle dummy states if flesh state 0
and set "east" neighbor for match cmds

if (ns<'#) ; if conditional...
; we always use 1 dummy for conditional skeletonizing
we need 2 if the flesh state is 0

if (flesh - 0)
exch 0 DUMMY2 -> ,stgprefix ; DUMMY2 is temporary flesh state
cover DUMMY M DU'Y2 -> ,stgsuffix DUM4YI maps to (temp) flesh state
exch 0 DUMMY2 -> ,stgsuffix dummy states go to specified flesh

state (0) when all done
if (ns - 0)

ns := DUMMY2 if ns also 0 it must be remapped
endif

54



IRIM

:cver :UMMYI flesh -> ,stg suff-x zcnditponal skels need one inused
state For calcu'aticns

esif

n cznditional skels tne east neighbor is special test case...
east := ns

else
; not conditional
if (flesh = 0)
exch 0 D1MMYI -> ,stg_prefix a zero output state has special

meaning in NRAM--must change a
flesh state of 0 to something else
during skel processing...

stgsuffix - tgoorefix and map "something else" back to 0
when done

flesh i= DUMMYI
endif
; non-conditional (and not all states) skels - the east neighbor is normal...
east := -tf

endif

*w*' ** '**''*** *w**"" generate skel code using match command

eat one direction at a time (else might eat too much) - East first

if singpts
match flesh # ~tf ~tf &

~tf tf east &~tf ~tf ~tf 0 OR

match flesh # ~tf tf &
~tf tf east &
tf ~tf ~tf 0 OR

match flesh tf ~tf ~tf &
~tf tf east &
tf ~tf ~tf 0 OR

match flesh tf ~tf tf &
~tf tf east &
tf ~tf tf 0 OR

endif

if endpts
match flesh # ~tf # &

tf tf east &
# ~tf # 0 OR

endif

match flesh tf tf # &
tf tf east &
tf tf # 0 OR

match flesh tf tf # &
tf tf east &
# ~tf 0 0 OR

match flesh # ~tf # &

55



~RIM

:f tf eas
tf tf ]- ,Skelcodel

........... eek skelcodel as needed 'or iariations

all state skeletonizing...

ske~code1 Ci mode controlj := sKe~czde1[1]mode control] ! node dyn bias
S~elcodel1jLne_contrib:c_contrib] := 0

enoif

; ..... now generate and append stageops for
other 3 directions

rotatecode skelcodel 90 hexmode -> ,skelcodel
rotatecode skelcodel 180 hexmode -> skelcodel
rotatecode skelcodel 270 hexmode -> ,skelcodel

*; ----- *''*'"*'"***2"*WW*** "* generate 2nd and subsequent passes stagecode

skelcode2 :- skelcodel Multiple passes use same code except
if ( (passes>I) & (nse'#)) in conditional skeletons:

addl passes need flesh state in the
east neighbor contribution value.

stageop :- skelcodel(1] Extract stageop from stagecode--must do it
stageopte contrib] :- -flesh this way to generate a copy of the stage op
skelcode211].:- stageop ; to modify and use in place of original.
rotatecode skelcode2 qo hexmade -> ,skelcode2
rotatecode skelcodeZ WO hexmode -> ,skelcodeZ
rotatecode skelcode2 270 hexmode -> ,skelcode2

endif

; "multiply by number of passes and add prams

skelcode :- stgprefix + skelcodel + skelcodo2 * (passes-I) + stg suffix

;*'"''""****** ****** do the operation or store the code generated

if (typeof(stgcode) - T UNDEFINED) ; was stgcode specified?
applycode skelcode inimage -> outimage ; no--execute it

elseif (typeof(stgcode) - T STAGECODE) ; is stgcode stagecode?
stgcode :- stgcode + skelcode ; yes--append

else
stgcode :- skelcode ; no--make stgcode-skelcode

endif

; ""reset hexmode

hexmode :- temphex

; ""e're done! (with skel4)

endprocedure

56



~EFJM

REFERENCES

1. StLe Programmer's Manual, ERIM Document IPTL-89-294,
Environmental Research Institute of Michigan, Ann Arbor, November
1989.

2. C4PL User's Manual, ERIM Document IPTL-88-81, Environmental
Research Institute of Michigan, Ann Arbor, October 1989.

BIBLIOGRAPHY

C4PL Advanced Programming Manual, ERIM Document IPTL-88-84,
Environmental Research Institute of Michigan, Ann Arbor, June 1987.

Codd, E.F., Cellular Automata, Academic Press, New York, NY,
1968.

Preston, K., and M.J.B. Duff, Modern Cellular Automata,
Plenum Press, New York, NY, 1984.

Serra, J., Image Analysis and Mathematical Morphology,
Academic Press, New York, NY, 198-2.

57


